Status and Prospects of the TUCAN EDM experiment

Masaaki KITAGUCHI

Devision of Experimental Studies, Kobayashi-Maskawa Institute Laboratory for Particle Properties (Φ-Lab.), Department of Physics Nagoya University

Neutron EDM

Pospelov Ritz, Ann Phys 318 (05) 119

J. Engel et al., Prog. Part. Nucl. Phys. 71 (2013) 21.

$$\begin{aligned} d_{\rm Hg} &= -\left(0.38^{+2.3}_{-0.19} \times 10^{-17}\right) \overline{g}_{\pi NN}^{(0)} + \left(0^{+1.6}_{-4.6} \times 10^{-17}\right) \quad \overline{g}_{\pi NN}^{(1)} - \left(2.0^{+3.9}_{-0.0} \times 10^{-20}\right) C_{\rm T} \\ d_{\rm Xe} &= -\left(0.29^{+2.3}_{-0.11} \times 10^{-18}\right) \overline{g}_{\pi NN}^{(0)} - \left(0.22^{+1.7}_{-0.11} \times 10^{-18}\right) \overline{g}_{\pi NN}^{(1)} + \left(4^{+2}_{-0} \times 10^{-21}\right) \quad C_{\rm T} \\ d_{\rm n} &= -\left(1.5 \times 10^{-14}\right) \quad \overline{g}_{\pi NN}^{(0)} + \left(1.4 \times 10^{-16}\right) \quad \overline{g}_{\pi NN}^{(1)} \end{aligned}$$

Neutron EDM

Sensitivity was limited by statistical uncertainty.

J.M. Pendlebury & E. Hinds NIM A, 440 (2000), 471. T. Chupp et al., Rev. Mod. Phys., 91 (2019) 015001.

EDM search with UCNs

Measure spin-precession frequency in high electric field

В

 μ_n

 $H = -\mu_n \cdot B - d_n \cdot E$

 \boldsymbol{E}

 d_n

EDM search with UCNs

Extremely-low energy neutrons (UCNs) can be stored in the bottle.

 $\sigma(d_{\rm n}) = \frac{n}{2\alpha ET\sqrt{N}}$

Spin precession is accumulated in long storage time.

Sensitivity was limited by statistical uncertainty.

UCN density can not be increased from that in source. (Liouville's theorem)

High intensity source required

TUCAN Source & nEDM Spectrometer

Searches for Electric Dipole Moments: From Theory to Experiment, "Status and Prospects of the TUCAN EDM experiment", Mar. 4, 2023 Masaaki Kitaguchi, KMI, Nagoya University

۰Į ،

6

page

 \mathbf{N}

KM

UCN source

Superthermal method with superfluid He

Extremely-low energy neutrons (UCNs) (Golub & Pendlebury, 1977) cold neutron can be stored in the bottle. phonon free neutron Energy E 1 meV (12 K) UCN phonon-roton down Cold neutrons dispersion in He-II UCNs Up-scattering rate: $\tau_{up}^{-1} \propto T^7$ 7 nm⁻¹ Momentum Q (T: He-II temperature) neutron Experimental temperature velocity Area UCN UCN 5 m/s phonon 3 mK He-II 20 K 500 m/s LD₂ liquid D₂ 300 K thermal 1 km/s neutron D,0 target D20 -0 proton < few 1010 K 107 m/s Spallation reaction

Searches for Electric Dipole Moments: From Theory to Experiment, "Status and Prospects of the TUCAN EDM experiment", Mar. 4, 2023 Masaaki Kitaguchi, KMI, Nagoya University page

8

Prototype UCN source at TRIUMF

First proton beam: 2016

Prototype UCN source installation: 2016~2017

UCN production: 2017

Testing UCN apparatus: 2018~2019

Uninstall: 2021

20K D20

High power cryostat required!

UCN source upgrade

		Prototype	New	Factor					
	Cooling power of He cryostat	0.4 W	10 W	x 25					
³ He pumping							Prototype Protectives utch sour (RC(NG)NP)	New NgychCylsonuce (TRIUMTP)	Factor
He cryostat He cryostat						Beampower	498WV (499MEV×1482)	20kW (300keV (500 kateria)40uA)	×50
						Cold moderator Cold moderator	20K Solfa D2O Solid D2O	20K Liquid D ₂	×(2~3) x (2-3)
Superconducting polarizer	LD ₂ cryostat D ₂ O (300 K) Graphite			uction	UCN production volume UCN production volume	8L 8 L	27L 27 L	×3.4 x 3.4	
To nEDM				e		UCN production rate UCN production	3.2×104 UCN/84 3.2×104	(1.4-1.6)×10 ⁷ (1.4-1.6)×10 ⁷ (1.4-1.6)×10 ⁴	×500 x (350-500)
To 2nd port			UCN density in source	9 UCN/cm ³	4.7×10 ³ UCN/cm ³	×520 ease lifetime			
UCN valve	illed UCN quide			Cooling power of He cryostat	0.4W	10W	x25		
m ⁴ He- ³ He heat exchange	anger 4-	le .1 K) LD ₂ (20 K)	Epallation targ	get		UCN density in source	9 UCN/cm³ (E < 90 neV)	4.7x10 ³ UCN/cm ³ (E < 210 neV)	x 520

UCN source upgrade

Keep the production volume at ~1K under 10 W of heat load

Halium anvoatat

Studies with cryostat, heat exchanges • Liquid helium transfer to 4K re-Cooling reservoir ³He pumping Helium return goes Heat exchange ield cooling line 0.8 K 3He / 1 K He-H K pot Pre-Cooling of 2nd test via JT and JT bypass HEX7 return connects 3He supply 3He pumping **Real Model** takes 3He supply • 2 days IP He supply S-Bend 1000 L liquid helium ach 4K reservoir tc COME 4r tail liquid ³He liquid helium sł Heaters Temp. sensors (cernox) UCN

Searches for Electric Dipole Moments: From Theory to Experiment, "Status and Prospects of the TUCAN EDM experiment", Mar. 4, 2023 Masaaki Kitaguchi, KMI, Nagoya University

page 13

Cooling of 2nd test

Vertical Fin Prototype

Surface area in**ex**iling curve measurement Isopure helium

cevøeegeht

ng **Suppon**easurement

ire helium

ht

ort

Heat exchange 0.8 K 3He 1 K He-II

id helium shortage during weekend

Cooling of 2nd test

Vertical Fin Prototype

Decided on the HEX1 design

Surface ar Component tests (2019)

Shield cooling line

T. Okamura et al., IOP Conf. Ser.: MSE. 755, 012141 (2020)

Heat Exchange development

Vertical Fin Prototype

Fin machining

Height 15 mm, thickness 1 mm, Gap 1 mm

Polishing

@SUS @Cu Ra = 0.019 µm Ra = 0.020 µm

Thickness 5 µm 12.36 % P fraction (X-ray fluorescence analysis)

Searches for Electric Dipole Moments: From Theory to Experiment, "Status and Prospects of the TUCAN EDM experiment", Mar. 4, 2023 Masaaki Kitaguchi, KMI, Nagoya University

I \mathbf{N} page 16 KM

Surface area

cevva∉eegeht

ng **Su**ipya

inessiling curve measurement

EB welding test

Tail section and UCN guide

UCN production volume and UCN guide has been mede at TRIUMF.

UCN storage test at LANL

Tail section and UCN guide

UCN production volume and UCN guide has been mede at TRIUMF.

UCN guide test at J-PARC

Precise study of UCN reflection

Select NiP coating

nEDM spectrometer

Magnetically Shielded Room

Requirements Shielding factor ~10⁵ (@10 mHz or higher) to achieve ~10 pT/cycle stability (1 cycle~100s) Fields < 1nT gradient < 100 pT/m in the central (1m)³ volume

in the central (1m)³ volume cf: N. Ayres et al., Rev. Sci. Inst. 93, 095105 (2022)

Construction started from October 2022. 4-layer mumetal shield (+1 layer of Cu layer) Design shielding factor of ~10⁵ confirmed by FEA simulations

Magnetically Shielded Room

Magnetic field mapping

 $|B| \approx 370 \ \mu T$ at maximum

Dipole-like field from the cyclotron

Fluctuation < 150 nT at 100 s averaging

T. Higuchi, EPJ Web. Conf. 262, 01015 (2022).

Design compensation coils, to be made by 2023.

Shielding factor measurement

cf: N. Ayres et al., Rev. Sci. Inst. 93, 095105 (2022)

Magnetically Shielded Room

Simultaneous Spin Analyzer (SSA)

Prototype test at J-PARC

Magnetic thin film functions as an analyzer with low magnetic field.

EDM cell and UCN valve

Prototype test at J-PARC

UCN doppler shifter at J-PARC

Various tests can be done with 'pulsed' UCNs.

Others

Equipment in the mechanical design/construction phase

External field compensation (RCNP Osaka, TRIUMF)

UCN detector (Winnipeg)

HV/cell/valves/central region (TRIUMF)

Hg comagnetometer and Xe development lab (UBC)

NMOR-based Cs magnetometers (Winnipeg)

design phase prototype, test at J-PARC prototype, test at J-PARC prototype, prep. design 5 completed, 5 on order

Cs magnetometers Precise to ~ pT/√Hz

KM

ment, 4, 2023

page

Searches for Electric "Status and Prospec Masaaki Kitaguchi, I.

Prospects

Prospects

UCN source

2023- Helium cryostat install/tests
 ➡ installation of other source subsystems
 2024- UCN production with the new source

nEDM spectrometer

2023- MSR completion

 magnetometers install inner coils tests

2024- assembly and commissioning of the nEDM spectrometer

2025- nEDM data taking

400 days (MT)
$$\blacktriangleright \sigma(d_n) = 1 \times 10^{-27} \text{ e cm}$$

stable running of 14 hours/day

UCN production rate 2×10^7 UCN/s UCN density at production 6400 UCN/cm³ UCN density at nEDM cell 250 Pol. UCN/cm³

 $\sigma(d_{\rm n}) = \frac{n}{2\alpha ET\sqrt{N}}$

H. Aki RCNP Bidinosti³, C. A. Davis⁵, B. Franke⁵, D. Fujimoto⁵, M. T. W. Gericke⁴, P. Giampa¹¹,
R. Golub¹², S. Hansen-Romu⁴, K. Hatanaka⁶, T. Hayamizu¹⁰, T. Higuchi⁶, G. Ichikawa¹, S. Imajo⁶, B. Jamieson³,
S. Kawasaki¹, M. Kitaguchi⁹, W. Klassen², E. Klemets², A. Konaka^{2, 5}, E. Korkmaz⁷, E. Korobkina¹²,
F. Kuchler⁵, M. Lavvaf⁴, L. Lee^{4, 5}, T. Lindner^{3, 5}, K. W. Madison², Y. Makida¹, R. Mammei^{3, 5}, J. Mammei⁴,
J. W. Martin³, R. Matsumiya⁵, M. McCrea³, E. Miller², K. Mishima¹, T. Momose², T. Okamura¹,
H. J. Ong⁶, R. Picker^{5, 8}, W. D. Ramsay⁵, W. Schreyer⁵, H. M. Shimizu⁹, S. Sidhu^{5, 8}, S. Stargardter^{3, 4},
I. Tanihata^{6, 13}, S. Vanbergen^{2, 5}, W. T. H. van Oers^{4, 5}, and Y. Watanabe¹

¹KEK, ²The University of British Columbia, ³The University of Winnipeg, ⁴The University of Manitoba, ⁵TRIUMF, ⁶RCNP, ⁷The University of Northern BC, ⁸Simon Fraser University, ⁹Nagoya University, ¹⁰RIKEN, ¹¹SNOLAB, ¹²NC State University, ¹³Beihan University.

*As of 2022-Jan-22

Searches for Electric Dipole Moments: From Theory to Experiment, "Status and Prospects of the NC STATE DM experiment", Mar. 4, 2023 Masaaki Kitaguchi, KMI, Nage UNIVERSITY rsity rsity page 30

