LANL nEDM experiment

Searches for Electric Dipole Moments: From Theory to Experiment

Takeyasu Ito Los Alamos National Laboratory

KMI Institute, Nagoya University March 2-4, 2023

LA-UR-23-22094

Outline

- Purpose and goal
- UCN source and its upgrade
- LANL nEDM experiment
 - Overview
 - North Beamline characterization
 - Vacuum chamber, precession chamber, UCN valves, ...
 - Magnetically shielded room
 - B0 coil
 - Magnetometry
- Status and plans

LANL nEDM Collaboration

```
R. Pattie Jr.
East Tennessee State University
         S.K. Lamoreaux
           Yale University
```


T. Chupp*, S. Clayton, C. Cude-Woods, S. Currie, T. Hassan, <u>T. Ito</u>, M. Makela, C. Morris, C. O'Shaughnessy, Z.Tang, W. Uhrich, A. Urbaitis, Los Alamos National Laboratory * 2020 LANL Rosen scholar <u>T. Chupp</u>, F.B. Hills University of Michigan N. Sachdeva Northwestern University J. Chen, F. Gonzales, C. Hughes, <u>C.-Y. Liu</u>, J. Long, A. Reid, W. Snow, D. Wong Indiana University J. Brewington, W. Korsch, M. McCrea, P. Palamure, <u>B. Plaster, A. Tewsley-Booth</u> University of Kentucky A. Holley Tennessee Tech University S. Stanislaus Valparaiso University T. J. Bowles, B. Heckel University of Washington E. Sharapov Joint Institute of Nuclear Research

Northwestern

LANL nEDM: concept

- A neutron EDM experiment with a goal sensitivity of $\delta d_n \sim O(10^{-27})$ e-cm based on the proven room temperature Ramsey's separated oscillatory field method could take advantage of the existing LANL SD2 UCN source.
 - nEDM measurement technology for $\delta d_n \sim O(10^{-27})$ e-cm already exists. The systematic uncertainty of the recent PSI results was 2×10⁻²⁷ e-cm.
 - The successfully upgraded LANL UCN source has been shown to provide the UCN density required for an nEDM experiment with $\delta d_n \sim O(10^{-27})$ e-cm.
- Such an experiment could provide a venue for the US nEDM community to obtain physics results, albeit less sensitive, in a shorter time scale while development for the nEDM@SNS experiment continues.

nEDM measurement principle

For B ~ I μ T, v = 30 Hz.

$$v = (2\mu_n B \pm 2d_n E)/h$$
$$\Delta v = 4d_n E/h$$
$$\delta d_n = h \frac{\delta \Delta v}{4E}$$

For E = 10 kV/cm and $d_n = 3 \times 10^{-27}$ e-cm, $\Delta v = 0.03 \mu$ Hz.

Ramsey method of separated oscillatory fields

Baker et al, NIMA 736, 184 (2014) (arXiv:1305.7336)

Los Alamos Neutron Science Center (LANSCE)

UCN experimental area

LANL UCN Experimental Area (2018)

LANL UCN Experimental Area (2022)

UCNτ/UCNτ+ experiment

UCNA/UCNB/UCNA+ experiment

LANL UCN source

UCN density measurement based on vanadium activation

${}^{51}V + n \rightarrow {}^{52}V \rightarrow {}^{52}Cr + \beta + \gamma (1.4 \text{ MeV})$

- Detecting the 1.4 MeV gammas with a Ge detector determines the UCN capture rate by the vanadium foil.
- The Ge detector can be calibrated (for the efficiency and solid angle product) by placing a calibrated ⁶⁰Co source at the location of the vanadium foil.
- UCN density can be determined from:

$$R = \frac{1}{4} V A \rho$$

Polarized UCN density in a dummy nEDM cell on the West Beamline

Polarized UCN density (E < 170 neV) at t=0

- 12 UCN/cc from the fill and dump measurement (was 2.5 UCN/cc before the source upgrade)
- 36 UCN/cc from vanadium foil activation measurement

The difference can be attributed to loss in the switcher and the finite detection efficiency.

Estimated statistical sensitivity of an nEDM experiment

Parameters	Values
E(kV/cm)	12.0
N(per cell)	39,100
T _{free} (s)	180
T _{duty} (s)	300
α	0.8
σ/day/cell (10 ⁻²⁶ e-cm)	5.7
σ/day (10 ⁻²⁶ e-cm) (for double cell)	4.0
σ/year (10 ⁻²⁷ e-cm) (for double cell)	2.1
90% C.L./year (10 ⁻²⁷ e-cm) (for double cell)	3.4

This estimate is based on the following:

- The estimate for E, T_{free} , T_{duty} , and α is based on what has been achieved by other experiments.
- The estimate for N is based on the actual detected number of UCN from our fill and dump measurement at a holding time of 180 s. Further improvements are expected (new switcher and new detector).

* "year" = 365 live days. In practice, it will take 5 calendar years to achieve this with 50% data taking efficiency

Neutron transport and storage test

Measurement corresponds to ~60,000 detected UCN @ 2000 Hz GV rate after 180 s when a dPS coated cell wall was used with the new switcher

Wong et al., NIMA 1050, 168105 (2023)

Apparatus Overview

Selected features

- Ramsey's separated oscillatory field method at RT
- Double precession chamber
- Simultaneous spin analysis
- MSR
 - 4 layer mu-metal + 1 layer RF shield
 - Outer dimension: 3.5 m x 3.5 m x 3.5 m
 - Inner dimension: 2.4 m x 2.4 m x 2.4 m
- UCN switcher Magnetometry:
 - 199Hg comagnetometer
 - 199Hg external magnetometer inside the HV electrode
 - Atomic external magnetometers
 - Demonstrated UCN density
 - Sensitivity goal: $\delta dn = 3 \times 10^{-27}$ e-cm in one live year

16

UCN transport and analysis system

~2.5 m

taneous Analyzer

UCN transport and analysis system

Switchers being installed

Vacuum chamber and internal design

Precession chambers

Non-magnetic vacuum chamber

Electrodes and precession chamber

Precession chamber walls: dPS coated PMMA Electrodes: NiMo coated aluminum -> DLC coated aluminum

Assembly of the cells, valves, ...

Magnetically shielded room 4 μ-metal + 1 Cu layers

Design performance

Frequency (Hz)	SF
0.01	100,001
0.1	100,001
1	1,000,001
10	10,000,001
100	10,000,001

Field cage characterization

(µT) B

23

Installation of MSR in progress

Layer 1, outer and inner cladding, lighting, pneumatic system for door have been installed (mid January 2022)

Measured shielding factor

Residual field inside the MSR

Point	x (cm)	y (cm)	z (cm)	Absolute Field (nT)	Specified (nT)
1	-40	-39	23	0.64	< 1
2	0	-39	23	0.51	< 1
3	40	-39	23	0.45	< 1
4	-40	39	-23	0.52	< 1
5	0	39	-23	0.41	< 1
6	40	39	-23	0.93	< 1

B0 coil design

- Octagon-shaped multi-gap solenoid
- Spin-transport coil interface

Modelled gradient:
$$\left| \frac{\partial B_z}{\partial z} \right| < 0.1 \text{ nT/m}$$

• Specifications: $\left| \frac{\partial B_z}{\partial z} \right| < 0.3 \text{ nT/m}$ inside each

cell (the difference between the cells < 10 pl)

B0 coil system

Bo coil and the frame

Bo coil sitting inside the MSR

B0 coil system

B0 field measurement

Magnetometers Up to 13 external magnetometers (inside vacuum) monitor B₀, gradients

OPMs: optically pumped alkali (Cs, Rb) magnetometers

Vacuum chamber installed in the MSR

Vacuum chamber installed in the MSR

Status and plans

- MSR was delivered in January 2022. It meets basic performance requirements. More detailed characterization is necessary.
- Precession chambers and UCN values were assembled.
- Engineering run started in December 2022.
 - UCN transport and storage
 - Spin transport

• Characterization and improvements of the apparatus will continue this year.