

Georg Bison :: Paul Scherrer Institute :: for the neutron EDM collaboration

Neutron EDM search at PSI: results and future prospects

KMI Workshop, Nagoya, March 2023

Introduction & neutron EDM experiment @ PSI

Results

New experiment n2EDM

External Interaction Hamiltonian

$$H_{\rm ext} = -2\,\mu_z\,B_0 \pm 2\,d_z\,E_0 = h\nu_L$$

Filling the precession chamber

Filling the precession chamber

Neutron detection

A device for simultaneous spin analysis of ultracold neutrons. Afach, et al., Eur. Phys. J. A 51, 143 (2015).

Ultracold neutron detection with ⁶Li-doped glass scintillators. Ban et al., Eur. Phys. J. A 52, 326 (2016).

Introduction & old neutron EDM experiment @ PSI

New experiment n2EDM

Our limit on the axion-gluon coupling

Search for axion-like dark matter through nuclear spin precession in electric and magnetic fields, Abel et al. Phys Rev X **7**, 041034 (2017).

asymmetry A

Effect	shift	error
Error on $\langle z \rangle$	82	7
Higher order gradients \hat{G}	69	10
Transverse field correction $\langle B_{\rm T}^2 \rangle$	0	5
Hg EDM[8]	-0.1	0.1
Local dipole fields	-	4
$v \times E$ UCN net motion	-	2
Quadratic $v \times E$		0.1
Uncompensated G drift	-	7.5
Mercury light shift	-	0.4
Inc. scattering ¹⁹⁹ Hg	-	7
TOTAL	69	18
	10^{-2}	^{28}ecm

Systematic uncertainty five times smaller than before.

Measurement of the Permanent Electric Dipole Moment of the Neutron. Abel et al., Phys. Rev. Lett. 124, 081803

$d_{\rm n} = (0.0 \pm 1.1_{\rm stat} \pm 0.2_{\rm sys}) \times 10^{-26} \, e \cdot {\rm cm}$

Effect	shift	error
Error on $\langle z \rangle$	32	7
Higher order gradients \hat{G}	69	10
Transverse field correction $\langle B_{\rm T}^2 \rangle$	0	5
Hg EDM[8]	-0.1	0.1
Local dipole fields	-	4
$v \times E$ UCN net motion		2
Quadratic $v \times E$	1.77	0.1
Uncompensated G drift	-	7.5
Mercury light shift	-	0.4
Inc. scattering ¹⁹⁹ Hg	-	7
TOTAL	69	18
	10^{-2}	28 ecm

Systematic uncertainty five times smaller than before.

Measurement of the Permanent Electric Dipole Moment of the Neutron. Abel et al., Phys. Rev. Lett. 124, 081803

$$d_{\rm n} = (0.0 \pm 1.1_{\rm stat} \pm 0.2_{\rm sys}) \times 10^{-26} \, e \cdot {\rm cm}$$

Effect	shift	error
Error on $\langle z \rangle$		7
Higher order gradients \hat{G}	69	10
Transverse field correction $\langle B_{\rm T}^2 \rangle$	0	5
Hg EDM[8]	-0.1	0.1
Local dipole fields	-	4
$v \times E$ UCN net motion	-	2
Quadratic $v \times E$		0.1
Uncompensated G drift	-	7.5
Mercury light shift	-	0.4
Inc. scattering ¹⁹⁹ Hg	-	7
TOTAL	69	18
		28

 $10^{-28} \, e {\rm cm}$

Measurement of the Permanent Electric Dipole Moment of the Neutron. Abel et al., Phys. Rev. Lett. 124, 081803

$$\vec{B}_G = \frac{\partial B_z}{\partial z} \frac{\vec{r}}{2}$$

$$\vec{B}_E = \frac{\vec{E}_0 \times \vec{v}}{c^2}$$

 \vec{B}_E

$$\Delta \omega = \frac{\gamma^2 B_{xy}^2}{2(\omega_L \pm \omega_r)}$$

$$= \Delta \omega_{EE} + \Delta \omega_{GG} + \Delta \omega_{EG}$$
EDM-like signal: proportional to the E-field and the B-field gradient
$$d_{\text{false}} = \frac{\hbar \gamma_{Hg} \gamma_n}{2c^2} \langle x B_x + y B_y \rangle$$
Pignol & Roccia, Phys. Rev. A 85, 042105 (2012)

15 Cs magnetometers

Optically pumped Cs magnetometers enabling a high-sensitivity search for the neutron electric dipole moment, C. Abel et al. PRA 101, 053419 (2020)

Introduction & old neutron EDM experiment @ PSI

New experiment n2EDM

$$d_{n} = (0.0 \pm 1.1_{stat} \pm 0.2_{sys}) \times 10^{-26} e \cdot cm$$
improve UCN statistics improve magnetic field

New n2EDM experiment

air-conditioned wooden house

active magnetic shield 55 km of cables 8 coils

• eight 3-axis fluxgates provide the reference for the active field control

passive magnetic shield six layers of Mumetal (25 tons) one layer of Al (eddycurrent shield)

Magnetic field mapper inside the MSR

 \searrow Windings of the main coil (produces the 1µT B0 field)

Vacuum tank (VT)temperature sensors on the VT

Magnetic field mapper

1.037 -8020 60 80 x (cm) -40 -20 0 20 -20 40 -6040 60 old experiment n2EDM $\Delta B = 860 \text{ ppm over } 46 \text{ cm}$ $\Delta B = 60 \text{ ppm over } 80 \text{ cm}$

80

Magnetic dipole contamination

y = 3 cmz dipole of 1e-05 A.m²

Magnetometry concept

Projected statistical performance

integration time

Hg magnetometer setup

G. Bison, KMI Workshop, Nagoya, March 2023, 49

Hg magnetometer stat. performance

Magnetometry concept

Cs magnetometer array optimization

26 segments, 4 Cs cells per segment, magnetic accuracy 5 pT, position accuracy 0.5 mm

Cs magnetometer concept

Cs magnetometer calibration

nEDM result & outlook for n2EDM

The nEDM collaboration

