ACME III: electron EDM search using cold ThO molecular beam

Takahiko MASUDA on behalf of the ACME collaboration

Research Institute for Interdisciplinary science, Okayama University,

ACME Collaboration

David DeMille

John Doyle

Gerald Gabrielse

Zhen Han

Peiran Hu

Xing Wu

Xing Fan

Daniel Ang

Siyuan Liu

Cole Meisenhelder

Collin Diver

Maya Watts

Koji Yoshimura Satoshi Uetake

Naboru Sasao Takahiko Masuda Ayami Hiramoto

Nick Hutzler

Cris Panda

Acknowledgements:

National Science Foundation Gordon & Betty Moore Foundation Alfred P. Sloan Foundation JSPS Kakenhi JST SICORP Matsuo Foundation

Outline

- Physics background and motivations
- Quick review of ACME:
- Improvements with ACME III
 - Statistics improvements
 - Systematics improvements

Experimental approach and prior results from ACME II

Sakharov conditions

Sakharov A. D., JETP 5 pp.24-26 (1967)

- Baryon number B violation
- C-symmetry and CP-symmetry violation
- Out of thermal equilibrium

 \rightarrow There must be a term that violates CP-symmetry beyond the Standard Model

EDM : electric dipole moment

EDM : Permanent electric polarization of internal charge

CP (T)

- If a spin 1/2 particle has finite EDM, it **violates** the CP symmetry.

ACME II : $|d_e| < 1.1 \times 10^{-29} e cm$ ACME Collab. Nature 562 (2018) 355.

ACME II : $|d_e| < 1.1 \times 10^{-29} e cm$ ACME Collab. Nature 562 (2018) 355.

ACME II : $|d_e| < 1.1 \times 10^{-29} e cm$ ACME Collab. Nature 562 (2018) 355.

ACME Collab. Nature 562 (2018) 355.

Principle of the EDM measurement

Spin precession measurement:

EDM changes precession frequency depending on E field reversal.

Electron EDM (eEDM, d_{e})

eEDM measurement in polar molecules.

Sensitivity for d_e can be amplified in polar molecules due to its large internal field.

$$e \sim \frac{\hbar}{E_{\rm eff}\tau} \frac{1}{\sqrt{\dot{n}T}}$$

		E _{eff} [GV/cm]	Reference
	YbF	25	J. Phys. B 30 , L607 (19
.+	ThO	78	J. Chem. Phys. 145 , 21430
	HfF+	23	Phys. Rev. A 96 , 040502 (
	ThF+	35	New J. Pays. 17 , 043005 (
	PbO	25	Phys. Rev. Lett. 89, 133001
и 2020	LrO, LrF+, LrH+	250-340	Phys. Rev. A 104 , 062801

Advantage of ThO

Ω -doublet Nearly degenerated parity doublet

Modest external E field can generate extremely strong internal E field (GV/cm)

Rotational energy $\Delta E \sim GHz$ P ~ O(1) @ 10 kV/cm

Ω-doublet case

 $\Delta E \sim MHz$ P ~ O(1) @ 10 V/cm

(Ref.) Atom case

ΔE ~ THz P ~ O(10⁻³) @ 10 kV/cm

3**∆**, State without magnetic moment

Electron's angular momentum (Λ =+2) and spin (Σ =-1) **vanish** the net magnetic moment

Insensitive to the magnetic field

EDM in a ThO molecule

EDM measurement state : $H^{3}\Delta_{1}$ state

Strong internal E field (Ω doublet) : $E_{eff} \sim 78$ GV/cm

10 V/cm external field can saturate the polarization • L.V. Skripnikov, J. Chem. Phys. 145 214307 (2016).

Tiny magnetic moment ($^{3}\Delta_{1}$): μ =0.0044 μ_{B}

- Insensitive to the magnetic field ٠ L.V. Skripnikov et al., J. Chem. Phys. 139 221103 (2013).
- Long lifetime (spin precession time) : $\tau = 4.2 \pm 0.5$ ms
- Diatomic, Even nucleus, for spectroscopic simplicity
- Affordable laser : Red NIR
- Efficiently producible in a beam by laser ablation
- ²³²Th¹⁶O Natural abundance >99.7%
 - etc. •

ħ $\Delta d_{\rm e} \sim \frac{1}{E_{\rm eff}\tau} \sqrt{\dot{n}T}$

Zack Laser, Ph.D thesis. (2019)

Magnetic Shielding

Zack Laser, Ph.D thesis. (2019)

Zack Laser, Ph.D thesis. (2019)

Zack Laser, Ph.D thesis. (2019)

Example of spin rotation fringe

Cris Panda, Ph.D thesis. (2018)

Relative laser polarization angle, $\theta - \pi/4$ (rad)

ACME II result

based on

- 2×10¹⁴ ThO molecules detected
 - 6×10^6 / pulse × 3×10^7 pulses
 - 50Hz, 10 weeks
- 3×10⁵ p.e./pulse (5% eff.)

$d_{\rm e} = (4.3 \pm 3.0_{\rm stat} \pm 2.6_{\rm syst}) \times 10^{-30} e_{\omega^{N\varepsilon}} {\rm cm}$

Parameter	Shift	Uncertainty
$\partial \mathcal{B}_z/\partial z$ and $\partial \mathcal{B}_z/\partial y$	7	59
$\omega_{ST}^{\mathcal{NE}}$ (via θ_{ST}^{H-C})	0	1
${\cal P}_{\sf ref}^{\mathcal{NE}}$	_	109
\mathcal{E}^{nr}	-56	140
$ \mathcal{C} ^{\mathcal{NE}}$ and $ \mathcal{C} ^{\mathcal{NEB}}$	77	125
$\omega^{\mathcal{E}}$ (via $\mathcal{B}_{z}^{\mathcal{E}}$)	1	1
Other magnetic-field gradients (4)	_	134
Non-reversing magnetic field, \mathcal{B}_z^{nr}	_	106
Transverse magnetic fields, \mathcal{B}_{x}^{nr} , \mathcal{B}_{y}^{nr}	—	92
Refinement- and readout-laser detunings	—	76
$\widetilde{\mathcal{N}}$ -correlated laser detuning, $\varDelta^{\mathcal{N}}$	—	48
Total systematic	29	310
Statistical uncertainty		373
Total uncertainty		486

Values are shown in μ rad s⁻¹. All uncertainties are added in quadrature. For $\mathcal{E}_{eff} = 78$ GV cm⁻¹, $d_e = 10^{-30}$ e cm corresponds to $|\omega^{\mathcal{NE}}| = \mathcal{E}_{eff} d_e / \hbar = 119 \ \mu$ rad s⁻¹.

ACME Collab. Nature 562 (2018) 355.

Statistics improvements in ACME III

5x long precession time (length)

Statistical sensitivity:

Improvement	Signal gain	EDM sensitivity
New beam source	1.5	1.2
Electrostatic lens	12	3.5
Longer precession time	0.3	2.6
Detector upgrade	2.7	1.6
Collection optics	1.7	1.3
Timing jitter reduction	1	1.7
Total	25	39

New cryogenic beam source w/ load-lock

Ablation targets were usually replaced after ~2 weeks in ACME II. •

16/36

ThO beam is collimated by electrostatic potential

- Increasing the number of available ThO ٠
- Reducing the loss of extended flight distance ٠

Q state

- Large Stark shift: $D_Q = 4.1D$ ۲
- •
- ٠

ostatic molecular lens

x16 improvements has been demonstrated.

X. Wu et al., New J. Phys. 24 073043 (2022). (consistent with expectations from the simulations)

Longer precession time : $1 \rightarrow 5$ ms

Possible precession time is limited by the lifetime of the H state τ_{H}

Previous measurement : $\tau_H > 1.8 \text{ ms} \rightarrow \text{ACME II}$ used $\tau=1 \text{ ms}$ •

(A. Vutha et al., J. Phys. B 43 (2010) 074007.)

Recent measurement : $\tau_H = 4.2 \text{ ms} \rightarrow \text{ACME III}$ will use $\tau = 5 \text{ ms}$ ullet

interaction length L_{int} (cm)

<u>D. Ang et al., PRA **106**, 022808 (2022).</u>

- perfect collimation with lens collimation 8

 $\Delta d_{\rm e} \sim \frac{\hbar}{E_{\rm eff} \tau} \frac{1}{\sqrt{\dot{n}_{\rm mol} T}} \sqrt{\frac{F}{\varepsilon_{\rm det}}}$

Photodetector upgrade : PMT \rightarrow SiPM

Changing from PMTs to SiPMs will increase the PDE by a factor of ~2 and sensitive area as well.

F	PMT vs. SiPM	18 mm	24 mm
		ACME II PMT	Advanced ACME SiP
	Part No.	R7600U-300	S13361-6075NE-04
	Sensitive area	18×18 mm ²	24×24 mm² (16 ch.
	Q.E. @ 512 nm	~25%	~45%
	Excess noise F	~1.2	~1.2 (depend on CT & AP)
	Q.E. @ 703 nm	~0.6%	~ 20%
	Dark count @ 25°C	~ 3 kcps	~ 2 Mcps/ch

few pF

Readout laser

Capacitance

1.4 nF

SiPM module

Suppress DCR

Cooling (-20°C), Vacuum (<10 Pa)

Suppress Optical Crosstalk and Stray light

Optimized triple filtering scheme

Dedicated electronics

Molecular pulse duration ~ 4 ms Readout laser pulse duration ~ 1 us state lifetime 115 ns 16ch analog summing

T. Masuda et al., Opt. Express 29 16914 (2021).

Cut-out view

21/36

Beam test (2021 August)

ThO fluorescence detection test @ ACME II beam line

<u>A. Hiramoto et al., Nucl. Instrum. Meth. A, 1045 (2023) 167513.</u> <u>T. Masuda et al., Opt. Express **31** 1943 (2023).</u>

Collection optics

Bigger lens increases the collection efficiency: $5\% \rightarrow 8\%$

detection rate (Mcps)	
8.55	x 2 74: detector effect
23.4	
39.3	× 1.68: optics effect

Summary of the statistics improvements

Improvement	Signal gain	EDM sensitivity gain	Reference
New beam source	1.5	1.2	
Electrostatic lens	12	3.5	X. Wu <i>et al</i> ., New J. Phys. 22 , 023013 (2020) X. Wu <i>et al</i> ., New J. Phys. 24 , 073043 (2022)
Longer precession time	0.3	2.6	D.G. Ang <i>et al</i> ., Phys. Rev. A 106 , 022808 (2022)
Detector upgrade	2.7	1.6	T. Masuda <i>et al</i> ., Opt. Exp. 29 , 16914 (2021) T. Masuda, A. Hiramoto <i>et al</i> ., Opt. Exp. 31 , 1943 (2023
Collection optics	1.7	1.3	
Timing jitter reduction	1	1.7	C.D. Panda <i>et al</i> ., J. Pays. B 52 , 235033 (2019)
Total	25	39	

ACME III anticipated statistical sensitivity

$$\delta d_{\rm e} \sim 3 \times 10^{-31} \ e \cdot {\rm cm}/{\sqrt{\rm day}}$$

Systematics improvements in ACME III

$\omega^{\mathcal{N}\mathcal{E}}$	
Parameter	Shift
$\partial \mathcal{B}_z/\partial z$ and $\partial \mathcal{B}_z/\partial y$	7
ω_{ST}^{NE} (via θ_{ST}^{H-C})	0
$P_{\rm ref}^{\mathcal{NE}}$	—
\mathcal{E}^{nr}	-56
$ \mathcal{C} ^{\mathcal{NE}}$ and $ \mathcal{C} ^{\mathcal{NEB}}$	77
$\omega^{\mathcal{E}}$ (via $\mathcal{B}_z^{\mathcal{E}}$)	1
Other magnetic-field gradients (4)	—
Non-reversing magnetic field, \mathcal{B}_z^{nr}	_
Transverse magnetic fields, \mathcal{B}_{x}^{nr} , \mathcal{B}_{y}^{nr}	—
Refinement- and readout-laser detunings	—
$ ilde{\mathcal{N}}$ -correlated laser detuning, $\varDelta^{\mathcal{N}}$	_
Total systematic	29
Statistical uncertainty	
Total uncertainty	
Values are shown in μ rad s ⁻¹ . All uncertainties are added in q $d_e = 10^{-30}$ e cm corresponds to $ \omega^{\mathcal{NE}} = \mathcal{E}_{eff} d_e / \hbar = 119 \ \mu$ rad s ⁻¹	uadrature. For \mathcal{E}_{eff}

Ellipticity gradients in the laser polarization

State preparation and readout are depending on the laser polarization.

If the laser polarization is not perfect, the spin precession could be disturbed.

False EDM : Ellipticity gradient (laser imperfection) + AC-Stark shift gradient (E-field imperfection)

Cause of systematics

Η

Ellipticity gradient due to glass

Laser polarization is varying due to birefringence gradient of the optical components along the laser pass.

Birefringence Gradients in Vacuum window & Field plate:

mainly caused by stress

wikipedia

- ACME II. 0.1%/mm
- ACME III. 0.01%/mm

Field plate

Birefringence gradients in ACME II field plates were dominated by tangential clamping stress.

Stress-free mounting has been designed.

Birefringence free mounting scheme

Proof of principle clamping modification on ACME II

Vacuum window

Vacuum window is suffered huge stress due to atmospheric pressure. → Use *ultra-low stress-optic glass* as window material & Thin slit vacuum opening to minimize vacuum stress

Glass	Stress-optical coef (10 ⁻³ /GPa)
Borofloat	4.0
N-BK7	2.77
Corning 7980 (Fused silica)	3.5
Shott SF57HTultra	0.07

Birefringence measurement @ Okayama

Evaluation is on-going w/ a dedicated polarimeter.

V. Wirthl et al., OSA Continum 4 2949 (2021).

magnetic field

- Enlarged magnetic shield
- Applied magnetic field ~10 nT
- Required residual field • & field gradient < 0.1 nT, < 0.1 nT/cm
- •

3-layer mu-metal shield + 108 degaussing coils + Self shielded Cos θ coils

Siyuan Liu (Northwestern), DAMOP2022

Magnetic shield

Assembly work and performance evaluation on-going at Northwestern.

Photo gallery at Northwestern

March 2021 Clean up the ACME space

ACME construction in progress !

^{34/36} 2022-2023

Outlook

.....

.....

.....

the standard model.

• eEDM by a factor of ~30.

• Electron EDM (eEDM) is a powerful tool to search for a new physics beyond

Many R&D works for ACME3 are going to improve the current upper limit of

